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Magnetoelectric effect in composite materials results from the combination of piezoelectric and magnetostrictive effects via elastic
interaction. This work focuses on the modeling of magnetoelectric multilayer structures with interdigitated electrodes. A finite element
formulation for such coupled problems, taking into account the nonlinearity of magnetostrictive material, and an application to a
magnetic sensor are presented.
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I. INTRODUCTION

THE study of magnetoelectric (ME) composite is a long-

standing domain of interests in physics due to the pos-

sibilities of applications such as sensors, actuators, memory

devices. . . . The magnetoelectric phenomenon consists in the

existence of an electric polarization induced by a magneti-

zation or, conversely, a magnetization induced by an electric

polarization. The magnetoelectric composite materials, made

of the assembly of magnetostrictive and piezoelectric con-

stituents, have shown to exhibit the highest extrinsic ME effect

than homogeneous intrinsic materials [1]. A significant and

additional factor when determining the ME performance is

the geometry of the electrodes associated to the piezoelectric

material. Conventional electrodes bonded on surfaces of a

piezoelectric material use the electric field through the material

thickness and the transverse (d31) piezoelectric coefficient. It

results a planar actuation due to the electric fields through the

thickness of the film and the transverse piezoelectric effect.

Other electrode configurations are the interdigitated electrode

(IDE) patterns. IDE [2] consist of a series of opposing polarity

electrodes deposited on either side of a piezoelectric material.

By using IDE, a large component of the electric field can be

aligned in the direction of actuation and polarisation. Thus,

the longitudinal (d33) piezoelectric coefficient is utilized in

this direction. As the longitudinal piezoelectric effect can be

significantly larger than the transverse effect (d33/d31 ≈ 2.5
for most of PZT) an increased planar actuation is obtained,

leading to an increase of the magnetoelectric coupling.

In this work a model based on finite element method is

developed for magnetoelectric composites with interdigitated

electrodes. In a first part, the formulation based on a thermo-

dynamical approach is introduced. The model is then applied

to a magnetoelectric sensor.

II. CONSTITUTIVE LAWS

A. Piezoelectric and magneto-elastic behaviours

The behaviour of active materials, when the loss are ne-

glected, is given by the knowledge of the dependence of the

electric flux density D and the stress tensor T to the electric

field E and the strain tensor S for piezoelectric materials, and

of the magnetic field H and the stress T to the magnetic

induction B and the strain S for magnetostrictive materials.

T(E,S) D(E,S) (1) T(B,S) H(B,S) (2)

Based on thermodynamic potential and energy exchange, the

definition of (1) and (2) requires the use of piezoelectric

coefficients α [3] as well as piezomagnetic coefficients γ [4]:

αikl =
∂di
∂skl

= −
∂tkl
∂ei

(3) γikl =
∂hi

∂skl
=

∂tkl
∂bi

(4)

Considering that piezoelectric materials are usually prepolar-

ized, the piezoelectric constitutive law is assumed to be linear

around the polarization point:
(
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(5)

where ce is the stiffness tensor at constant electric field and εs

is the electrical permittivity at constant strain.

Unlike the piezoelectric material, the magnetostrictive mate-

rial is not prepolarized. Its behaviour is highly non linear and

this non linearity has to be considered in the magnetostrictive

constitutive laws. The mechanical behaviour is written in the

framework of linear elasticity, using the decomposition of the

total strain into an elastic strain Se and the magnetostriction

strain Sµ (skl = sekl + sµkl):

tij(B,S) = Cms
ijkl(skl − sµkl(B)) (6)

with Cms
ijkl the usual stiffness tensor of the magnetostrictive

material, skl and sµkl the total strain and magnetostriction strain

tensors.

The integration of the piezomagnetic coefficients (4) be-

tween Sµ and S, leads to the magnetic behaviour law. This

law can be written by introducing a coercive magnetic field

Hc which describes the effect of the stress application:

hi(B,S) = h0
i (B,Sµ)− Cms

klnp

∂sµnp(B)

∂bi
(skl − sµkl)

= h0
i (B,Sµ)− hc

i (B,S)

(7)



hc
i (B,S) is the magnetic field induced along i axis by stress

at given magnetic flux density and h0
i (B,Sµ) is the magnetic

field at free stress depending only of magnetic flux density.

B. Magnetostriction strain model

Magnetostriction strain is assumed isochoric and isotropic.

In the reference frame of magnetic flux density
(

b‖, b⊥1, b⊥2

)

,

the magnetostriction strain tensor is diagonal and is expressed

by a polynomial function of the magnetic induction (8):

sµ‖ (B) =

N
∑

n=0

βn ‖B‖
2(n+1)

sµ⊥1 = sµ⊥2 = −
sµ‖ (B)

2
(8)

where βn are magnetostrictive coefficients identified from

experimental magnetostriction curves[5] and ‖B‖ the norm of

B.To take into account the magnetic flux density distribution, it

is necessary to consider the material frame. The magnetostric-

tion strain tensor in this case is given by the following indicial

form:

sµkl(B) =
1

2

N
∑

n=0

βn ‖B‖
2n

(

3bkbl − δkl ‖B‖
2
)

(9)

From the expression of the magnetostriction strain tensor, the

coercive magnetic field (7) can be expressed as the product of

an equivalent reluctivity tensor with the magnetic flux density:

hc
i (B,S) = νcij(B,S) bj (10)

III. FINITE ELEMENT FORMULATION

Considering the static case, the electro-magneto-mechanical

problem is defined by a minimization of the functional energy

F in terms of E, B and S:

F(E,B,S) = W (E,B,S)− T (11)

where W (E,B,S) and T are respectively the electro-magneto-

elastic energy and the work of electric, magnetic and mechani-

cal sources. The minimization of (11) leads, after discretisation

and assembling, to the algebraic equation system (12):
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ϕ


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



J+ Jc(B,S)
FT + Fmf (B) + Fµ(B)

Q



 (12)

where Kuϕ = −Kt
ϕu describes the electro-mechanical coupling,

Jc(B,S) is an induced current density associated to the effect

of stress on the magnetic behaviour, Fmf (B) and Fµ(B) the

equivalent nodal magnetic forces and magnetostriction forces

respectively. J and FT are the term due to external sources

and Q the total electrical charge on the electrodes. Magnetic

vector potential a is discretised with edge (3D) and nodal (2D)

elements. The displacement u and the electric potential ϕ are

discretised using nodal elements.

The numerical solution of this nonlinear problem is obtained

by an iterative process, modified fixed point or Newton-

Raphson procedure.
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Fig. 1. The piezoelectric layer with interdigitated surface electrodes (RVE:
Representative Volume Element)

IV. RESULTS

The model is applied to a trilayer magnetoelectric composite,

constituted by a piezolectric layer with interdigitated electrodes

(Fig. 1) sandwiched between two magnetostrictive layers.

As shown in Fig.2, the electric field direction within the

piezoelectric layer is non-uniform and will follow the field

lines. Since the poling of the piezoelectric layer is performed

using the interdigitated electrode patterns, the direction of pol-

ing will follow these field lines. Consequently, the piezoelectric

material properties will continuously change with respect to the

model axis. The numerical procedure involves, in a first step, an

electrostatic computation to define the polarization orientation.

According to this information the material properties of the

piezoelectric layer are modified within each finite element.
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Fig. 2. Electric field (MV/m) between two electrodes fingers (RVE) in the xy

plane

V. CONCLUSION

A magnetoelectric model, associated to a finite element

formulation, has been presented. It is applied to specific

structures for the design of magnetic sensors with interdigitated

electrodes. In the full paper, the magnetoelectric effect model

will be detailed as well as numerical results analysis.
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